转载

Unity3D——主角面朝方向一定区域内对象角度计算

写在前面的话,前两天有个朋友在QQ上问我 如何获取主角面朝方向一定区域中的敌人对象。这个命题看似简单,其实里面蕴含了很多数学方面的东西。今天刚好有时间我就彻底的把这个疑问写在博客中。希望可以帮助到他。

在上代码之前请大家跟我先做几个简单的练习题,角度向量的计算一定要学会,不然后面的东西会很难懂。

1.已知3D坐标,和一个旋转角度,以及一段距离,求目标点的3D坐标。

已知当前点为Target,目标点沿着Target的Y轴旋转30度,沿着Target的X轴延伸10米求目标点的3D坐标?

using UnityEngine;
using System.Collections;
 
public class Test : MonoBehaviour
{
 
	public Transform Target;
 
	void LateUpdate ()
	{
		Quaternion rotation = Quaternion.Euler(0f,30f,0f) * Target.rotation;
		Vector3  newPos = rotation * new Vector3(10f,0f,0f);
		Debug.DrawLine(newPos,Vector3.zero,Color.red);
		Debug.Log("newpos " + newPos +" nowpos " + Target.position + " distance " + Vector3.Distance(newPos,Target.position));
	}
 
}

输出结果 :新坐标 (8.7, 0.0, -5.0) 当前坐标 (0.0, 0.0, 0.0)两点之间的距离 10。

 2.已知3D模型的角度求它的向量。

已知3D模型Target,Y轴旋转30度后向前平移。

using UnityEngine;
using System.Collections;
 
public class Test : MonoBehaviour
{
 
	public Transform Target;
 
	void LateUpdate ()
	{
 
		if(Input.GetMouseButton(0))
		{
			Quaternion rotation = Quaternion.Euler(0f,30f,0f) * Target.rotation;
			Vector3  newPos = rotation * Vector3.forward;
			Target.Translate(newPos.x,newPos.y,newPos.z);
		}
	}
 
}

3.已知一个目标点,让模型朝着这个目标点移动。

这是一个比较简单的例子,大家应该都能看明白。

Target.transform.LookAt(newVector3(100f,200f,300f));
Target.Translate(Vector3.forward);

这里我要说的就是Vector3.forward ,它等价与 new Vector3(0,0,1);它并不是一个坐标,它是一个标准向量,方向是沿着Z轴向前。这样平移一次的距离就是1米, 如果Vector3.forward * 100那么一次平移的距离就是100米。 

在看看下面这段代码

Vector3vecn=(TargetCube.position-Target.position).normalized;
 
Target.Translate(vecn*0.1f);

用向量减去一个向量求出它们的差值,normalized 是格式化向量,意思是把它们之间向量格式化到1米内。这样就可以更加精确的计算一次平移的距离了 vecn *0.1f 就标示一次平移1分米,蛤蛤。

 向量不仅可以进行X Y Z轴的移动,同样可以进行旋转 ,下面这段代码就是让向量沿着Y轴旋转30度。

Vector3vecn=(TargetCube.position-Target.position).normalized;
 
vecn=Quaternion.Euler(0f,30f,0f)*vecn;
 
Target.Translate(vecn*0.1f);

如果上述三道简单的练习题 你都能了然于心的话,那么本文最大的难题我相信也不会是什么难事,继续阅读吧。

假设我们需要计算主角面前5米内所有的对象时。以主角为圆心计算面前5米外的一个点,为了让大家看清楚我现将这条线绘制出来。

private float distance = 5f;
	void Update () 
	{
		Quaternion r= transform.rotation;
		Vector3 f0 =  (transform.position  + (r *Vector3.forward) * distance);
		Debug.DrawLine(transform.position,f0,Color.red);
	}

如下图所,我们已经将这两个点计算出来了。此时你可以动态的编辑主角Y轴的坐标,这个点永远都是沿着主角当前角度面前5米以外的点。


接下来,我们需要计算主角面前的一个发散性的角度。假设主角看到的是向左30度,向右30度在这个区域。

private float distance = 5f;
	void Update () 
	{
		Quaternion r= transform.rotation;
		Vector3 f0 =  (transform.position  + (r *Vector3.forward) * distance);
		Debug.DrawLine(transform.position,f0,Color.red);
 
		Quaternion r0= Quaternion.Euler(transform.rotation.eulerAngles.x,transform.rotation.eulerAngles.y - 30f,transform.rotation.eulerAngles.z);
		Quaternion r1= Quaternion.Euler(transform.rotation.eulerAngles.x,transform.rotation.eulerAngles.y + 30f,transform.rotation.eulerAngles.z);
 
		Vector3 f1 =  (transform.position  + (r0 *Vector3.forward) * distance);
		Vector3 f2 =  (transform.position  + (r1 *Vector3.forward) * distance);
 
		Debug.DrawLine(transform.position,f1,Color.red);
		Debug.DrawLine(transform.position,f2,Color.red);
 
		Debug.DrawLine(f0,f1,Color.red);
		Debug.DrawLine(f0,f2,Color.red);
	}

如下图所示,这时主角面前的区域就计算出来了。看起来就是两个三角形之间的区域。


最后就是简单的套用公式,计算一个点是否在三角形内,在本文中就是计算敌人的点是否在面前的这两个三角形内。

using UnityEngine;
using System.Collections;
 
public class MyTest : MonoBehaviour {
 
	public Transform cube;
 
	private float distance = 5f;
	void Update () 
	{
		Quaternion r= transform.rotation;
		Vector3 f0 =  (transform.position  + (r *Vector3.forward) * distance);
		Debug.DrawLine(transform.position,f0,Color.red);
 
		Quaternion r0= Quaternion.Euler(transform.rotation.eulerAngles.x,transform.rotation.eulerAngles.y - 30f,transform.rotation.eulerAngles.z);
		Quaternion r1= Quaternion.Euler(transform.rotation.eulerAngles.x,transform.rotation.eulerAngles.y + 30f,transform.rotation.eulerAngles.z);
 
		Vector3 f1 =  (transform.position  + (r0 *Vector3.forward) * distance);
		Vector3 f2 =  (transform.position  + (r1 *Vector3.forward) * distance);
 
		Debug.DrawLine(transform.position,f1,Color.red);
		Debug.DrawLine(transform.position,f2,Color.red);
 
		Debug.DrawLine(f0,f1,Color.red);
		Debug.DrawLine(f0,f2,Color.red);
 
		Vector3 point = cube.position;
 
		if(isINTriangle(point,transform.position,f1,f0) || isINTriangle(point,transform.position,f2,f0) )
		{
			Debug.Log("cube in this !!!");
		}else 
		{
			Debug.Log("cube not in this !!!");
		}
 
	}
 
	private  float triangleArea(float v0x,float v0y,float v1x,float v1y,float v2x,float v2y) 
	{
        return Mathf.Abs((v0x * v1y + v1x * v2y + v2x * v0y
            - v1x * v0y - v2x * v1y - v0x * v2y) / 2f);
    }
 
	bool isINTriangle(Vector3 point,Vector3 v0,Vector3 v1,Vector3 v2)
	{
		float x = point.x;
		float y = point.z;
 
		float v0x = v0.x;
		float v0y = v0.z;
 
		float v1x = v1.x;
		float v1y = v1.z;
 
		float v2x = v2.x;
		float v2y = v2.z;
 
		float t = triangleArea(v0x,v0y,v1x,v1y,v2x,v2y);
		float a = triangleArea(v0x,v0y,v1x,v1y,x,y) + triangleArea(v0x,v0y,x,y,v2x,v2y) + triangleArea(x,y,v1x,v1y,v2x,v2y);
 
		if (Mathf.Abs(t - a) <= 0.01f) 
		{
			return true;
		}else 
		{
			return false;
		}
	}
}

如下图所示,如果箱子对象是主角的视野中就会检测到。 


注意,上图中我的视野选择了两个三角形,如果你需要视野目标点是椭圆形的话,那么可以多设置一些三角形。但是这样就会非常消耗效率,我觉得这里完全可以使用1个三角形,,只是正对的目标点会出现一些偏差,影响其实并不会很大。如下图所示


代码简单的修改一下即可。

using UnityEngine;
using System.Collections;
 
public class MyTest : MonoBehaviour {
 
	public Transform cube;
 
	private float distance = 5f;
	void Update () 
	{
		Quaternion r= transform.rotation;
		Vector3 f0 =  (transform.position  + (r *Vector3.forward) * distance);
		Debug.DrawLine(transform.position,f0,Color.red);
 
		Quaternion r0= Quaternion.Euler(transform.rotation.eulerAngles.x,transform.rotation.eulerAngles.y - 30f,transform.rotation.eulerAngles.z);
		Quaternion r1= Quaternion.Euler(transform.rotation.eulerAngles.x,transform.rotation.eulerAngles.y + 30f,transform.rotation.eulerAngles.z);
 
		Vector3 f1 =  (transform.position  + (r0 *Vector3.forward) * distance);
		Vector3 f2 =  (transform.position  + (r1 *Vector3.forward) * distance);
 
		Debug.DrawLine(transform.position,f1,Color.red);
		Debug.DrawLine(transform.position,f2,Color.red);
		Debug.DrawLine(f1,f2,Color.red);
 
		Vector3 point = cube.position;
 
		if(isINTriangle(point,transform.position,f1,f2))
		{
			Debug.Log("cube in this !!!");
		}else 
		{
			Debug.Log("cube not in this !!!");
		}
 
	}
 
	private  float triangleArea(float v0x,float v0y,float v1x,float v1y,float v2x,float v2y) 
	{
        return Mathf.Abs((v0x * v1y + v1x * v2y + v2x * v0y
            - v1x * v0y - v2x * v1y - v0x * v2y) / 2f);
    }
 
	bool isINTriangle(Vector3 point,Vector3 v0,Vector3 v1,Vector3 v2)
	{
		float x = point.x;
		float y = point.z;
 
		float v0x = v0.x;
		float v0y = v0.z;
 
		float v1x = v1.x;
		float v1y = v1.z;
 
		float v2x = v2.x;
		float v2y = v2.z;
 
		float t = triangleArea(v0x,v0y,v1x,v1y,v2x,v2y);
		float a = triangleArea(v0x,v0y,v1x,v1y,x,y) + triangleArea(v0x,v0y,x,y,v2x,v2y) + triangleArea(x,y,v1x,v1y,v2x,v2y);
 
		if (Mathf.Abs(t - a) <= 0.01f) 
		{
			return true;
		}else 
		{
			return false;
		}
	}
}

上面我们介绍了三角形判断,当然也可以通过矩形来判断是否相交。。


using UnityEngine;
using System.Collections;
 
public class MyTest : MonoBehaviour {
 
	public Transform cube;
 
	private float distance = 5f;
	void Update () 
	{
		Quaternion r= transform.rotation;
		Vector3 left =  (transform.position  + (r *Vector3.left) * distance);
		Debug.DrawLine(transform.position,left,Color.red);
 
		Vector3 right =  (transform.position  + (r *Vector3.right) * distance);
		Debug.DrawLine(transform.position,right,Color.red);
 
		Vector3 leftEnd = (left  + (r *Vector3.forward) * distance);
		Debug.DrawLine(left,leftEnd,Color.red);
 
		Vector3 rightEnd = (right  + (r *Vector3.forward) * distance);
		Debug.DrawLine(right,rightEnd,Color.red);
 
		Debug.DrawLine(leftEnd,rightEnd,Color.red);
 
		Vector3 point = cube.position;
 
		if(isINRect(point,leftEnd,rightEnd,right,left))
		{
			Debug.Log("cube in this !!!");
		}else 
		{
			Debug.Log("cube not in this !!!");
		}
 
	}
 
     private float Multiply(float p1x , float p1y, float p2x,float p2y, float p0x,float p0y)
     {
        return ((p1x - p0x) * (p2y - p0y) - (p2x - p0x) * (p1y - p0y));
     }
 
	bool isINRect(Vector3 point,Vector3 v0,Vector3 v1,Vector3 v2,Vector3 v3)
	{
		float x = point.x;
		float y = point.z;
 
		float v0x = v0.x;
		float v0y = v0.z;
 
		float v1x = v1.x;
		float v1y = v1.z;
 
		float v2x = v2.x;
		float v2y = v2.z;
 
		float v3x = v3.x;
		float v3y = v3.z;
 
		if (Multiply(x,y, v0x,v0y, v1x,v1y) * Multiply(x,y, v3x,v3y, v2x,v2y) <= 0 && Multiply(x,y, v3x,v3y, v0x,v0y) * Multiply(x,y, v2x,v2y, v1x,v1y) <= 0)
             return true;
		else
            return false;
 
	}
 
}

代码:如果大家看了这篇文章后发现在你的项目中还有一些比较麻烦的角度与向量的算法,欢迎在下面留言给我,如果我有时间我会第一时间把方法贴在博客中。互相学习互相进步,加油!哇咔咔。。

马上过年了,雨松MOMO在这里祝福大家2013年幸幸福福的过日子,嘿嘿。

 

2013年4月补充

感谢楼下朋友给我的留言。, 我在补充一下这篇博客。

using UnityEngine;
using System.Collections;
 
public class NewBehaviourScript : MonoBehaviour {
 
	public Transform target;
 
	void Update()
	{
 
			float distance = Vector3.Distance(target.position,transform.position);
 
			Quaternion right	 = transform.rotation * Quaternion.AngleAxis(30,Vector3.up);
			Quaternion left	 = transform.rotation * Quaternion.AngleAxis(30,Vector3.down);
 
			Vector3 n = 	transform.position + (Vector3.forward * distance);
			Vector3 leftPoint = left * 	n ;
			Vector3 rightPoint =  right *n ;
 
			Debug.DrawLine(transform.position,leftPoint,Color.red);
			Debug.DrawLine(transform.position,rightPoint,Color.red);
			Debug.DrawLine(rightPoint,leftPoint,Color.red);
 
	}
}


这里我以角色左右个30度。 这样就可以根据两个模型的距离以及角度来判断了。。

文章最后发布于: 2016-05-04 20:31:45
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览