转载

四元数与欧拉角之间的转换

        在3D图形学中,最常用的旋转表示方法便是四元数和欧拉角,比起矩阵来具有节省存储空间和方便插值的优点。本文主要归纳了两种表达方式的转换,计算公式采用3D笛卡尔坐标系: 

图1 3D Cartesian coordinate System (from wikipedia) 

    定义分别为绕Z轴、Y轴、X轴的旋转角度,如果用Tait-Bryan angle表示,分别为Yaw、Pitch、Roll。 

图2 Tait-Bryan angles (from wikipedia) 

一、四元数的定义 

   通过旋转轴和绕该轴旋转的角度可以构造一个四元数: 

       其中是绕旋转轴旋转的角度,为旋转轴在x,y,z方向的分量(由此确定了旋转轴)。 

二、欧拉角到四元数的转换 

三、四元数到欧拉角的转换 

       arctanarcsin的结果是,这并不能覆盖所有朝向(对于的取值范围已经满足),因此需要用atan2来代替arctan。 

四、在其他坐标系下使用 

在其他坐标系下,需根据坐标轴的定义,调整一下以上公式。如在Direct3D中,笛卡尔坐标系的X轴变为Z轴,Y轴变为X轴,Z轴变为Y轴(无需考虑方向)。 

五、示例代码 

 http://www.cppblog.com/Files/heath/Euler2Quaternion.rar
Demo渲染两个模型,左边使用欧拉角,右边使用四元数,方向键Up、Left、Right旋转模型。

参考文献: 
[1] http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles 
[2] Ken Shoemake, Animating Rotation with Quaternion Curves, 1985
文章最后发布于: 2016-06-01 21:18:44
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览